IB Physics Glossary



Browse the glossary using this index

Special | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | ALL

V

Vector addition/subtraction

$$\vec{A}$$:
x- or horizontal component $$A_H=A \cos \theta$$;
y- or vertical component $$A_V= A \sin \theta$$;
magnitude $$A=\sqrt{A_H^2 + A_V^2}$$;
$$\tan \theta = \frac{A_V}{A_H}$$.
$$\vec{B}$$:
x- or horizontal component $$B_H=B \cos \theta$$;
y- or vertical component $$B_V= B \sin \theta$$;
magnitude $$B=\sqrt{B_H^2 + B_V^2}$$;
$$tan \theta =\frac{B_V}{B_H}$$.

Addition
$$\vec{C} = \vec{A} + \vec{B}$$:
x- or horizontal component $$C_H=A_H + B_H$$;
y- or vertical component $$C_V= A_V + B_V$$;
magnitude $$C=\sqrt{C_H^2 + C_V^2}$$;
$$tan \theta =\frac{C_V}{C_H}$$.

Subtraction
$$\vec{C} = \vec{A} - \vec{B} = \vec{A} + (\vec{-B})$$:
x- or horizontal component $$C_H=A_H - B_H$$;
y- or vertical component $$C_V= A_V - B_V$$;
magnitude $$C=\sqrt{C_H^2 + C_V^2}$$;
$$tan \theta =\frac{C_V}{C_H}$$.

Vector quantites

have magnitude and direction. Direction or changes in direction have an effect on vector quantities. Examples include displacement, velocity, acceleration, force, momentum and field strength.

Velocity

is the rate of change of displacement. (d)
$$v=\frac{\Delta s}{\Delta t}$$.

Visual binary stars

are stars of a system that are visible as separate stars (with unaided eye or through a telescope/binoculars)

Voltmeter

measures potential difference across a component. It is placed parallel to the component. An ideal voltmeter has infinite resistance so that no current flows through it.